
Benjamin Griffiths (160159871)

1 | P a g e Electronic & Electrical Engineering

The University of Sheffield

 DIGITAL LOGIC CIRCUITS LAB | REPORT

Introduction:

This laboratory focuses on using simulation tools to design and test a circuit using a Field Programmable Gate Array (FPGA), which

allows a circuit to be designed inside software and tested with a range of inputs. An FPGA is essentially a large array of

programmable logic blocks that can all be interconnected. It can be programmed to perform any digital function and can be re-

programmed at any time, making it ideal in engineering as a rapid prototyping tool, allowing a circuits function to be tested and

developed thoroughly before manufacturing it. This in practice can reduce the costs and time during development of a product.

The design problem is to design and test a 2-bit synchronous adder, which will add together two 2-bit numbers using digital logic

circuits which will be programmed into the FPGA.

Principles of Design Methodology:

Hierarchical Design:

Hierarchical design refers to dividing up a design task into multiple, independent tasks that are smaller and more manageable to

work on. For example, a top-down design approach would involve identifying complex systems and dividing them into successively

less complex sub systems.

The advantage of using such a design method is that the complexity of a system can be greatly reduced. For example, in figure 1,

the total system can be said to be formed of the 3 subsystems, which is less complex than saying its formed of the 6 modules. It

also adds a modular aspect of the system, enabling certain areas to be updated or modified easier when looking at an individual

module compared to the system as a whole.

The diagram in figure 1, can also been seen as a ‘top down’ design approach, which again involves viewing the large and complex

task at the top, then progressively working downwards while expanding each section of the task into smaller and simpler modules.

Figure 1: Hierarchical example diagram.

SYSTEM

SUB-SYSTEM SUB-SYSTEM

SUB-SYSTEM

MODULE MODULE

MODULE

MODULE

MODULE

MODULE

Benjamin Griffiths (160159871)

2 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Basic Design Flow:

Below, in figure 2, is an example of a typical design flow outlining the steps involved in the process of design a circuit to be tested

on an FPGA. Next to the flow-chart is a basic description of what each step involves.

Design Entry - Creating circuit design using schematic

diagram tools or coding a HDL (hardware description

language) model.

Design Synthesis – Converting HDL model into a gate-

level netlist (netlist consists of a list of all the terminals

of the components within the circuit).

Design Implementation – Translates the netlist into an

FPGA design. The Xilinx design flow consists of

translating, mapping, placing and routing to achieve

implementation. Place and route is the most important

stage as it defines the interconnections within the FPGA.

Design Verification – At each stage, Design Verification is

carried out, ensuring that the HDL implementation

follows the design specification and that there are no

errors. The verification process could consist of

Behavioural and Timing Simulation. Where Behavioural

simulation allows you to test the function of the design

and timing simulation looks at propagation delays

through various logic components etc.

Program File Generation - Creates a bit stream file that

can be transferred to the device.

Programming - Configures device from program file.

Testing - Thoroughly tests devices function.

Design Entry

Design Synthesis

Design Implementation

Program File Generation

Programming

Testing

Design

Verification

Figure 2: Basic FPGG Design Flow. Figure 2: Basic FPGA Design Flow.

Benjamin Griffiths (160159871)

3 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Design Problem/Discussion:

As described in the introduction, the design is 2-bit synchronous adder that inputs two 2-bit numbers and outputs the sum of

them.

This design problem can be simplified by adopting a top-down design approach as shown below in figure 3. This allows the lower-

level circuits/modules to be designed and tested at each step as the design is built up to its final arrangement.

The first step was to design and test the Logic gate circuit that functions as a 2-Bit full adder. This was designed using a schematic

diagram like in figure 4, which was then verified using behavioural simulation that tested all the possible input and output signals

to ensure the circuits function was correct.

2-Bit Adder

Dual 2-Bit Adder 3-Bit Output Register

2x Full Adder D-type Flip Flops

Clock

Logic Gate

Circuit
Multiplexer

Circuit
or

Figure 3: Top-down design approach used to design 2-bit adder.

Figure 4: Full adder logic circuit.

Benjamin Griffiths (160159871)

4 | P a g e Electronic & Electrical Engineering

The University of Sheffield

To verify the correct function of this circuit, the behavioural simulation produced a timing diagram like in figure 6 of all the

possible input combinations which were compared to the truth table for this circuit in figure 5. As seen in the timing diagram,

each vertical red line signifies a change in the input combination, with the corresponding change of the output combination.

An alternative method of designing a full adder is to use multiplexers, as seen in figure 8. It has the exact same function as the

logic gate based circuit in figure 4, but uses two 4-1 multiplexers by manipulating the truth table and using the C input as one of

the inputs to the multiplexers with the A & B inputs used as the address/select signals.

As seen in figure 7, the output SUM and CARRY signals can be written in term of the CARRY IN signal, allowing a simpler

multiplexer circuit to be designed where only the A and B input signals are required to change the multiplexers position.

Figure 6: Full adder timing diagram.

A Input

B Input

C Input

Sum Output

Carry Output

 Input Output

A B Carry Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 5: Full adder truth table.

Figure 7: Full adder truth table for
multiplexers.

 Input Output

A B Carry Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Sum = C

Carry = 0

Sum = C’

Carry = C

Sum = C’

Carry = C

[C’ = NOT C]

[1 or 0 = Logic HIGH or LOW]

Sum = C

Carry = 1

Figure 8: Full adder circuit using
multiplexers.

1 (Logic High)

0 (Logic Low)

Benjamin Griffiths (160159871)

5 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Similar to the Logic gate based full adder circuit, behavioural simulation is carried out to verify that the function of the circuit

follows the circuits truth table.

The next step is to move up the design flow, which as seen is figure 3, is to combine 2 of these together full adders into 1 module

which is effectively a dual 2-bit adder, using either the circuit in figure 4 or figure 8. This process is illustrated in the block diagram

in figure 9.

The other component of the full system in accordance to the top-down design flow is the 3-bit output register, which stores the

output of the dual full adder and displays them after a clock pulse (due to being a synchronous adder). As shown in figure 3, this

register is constructed of 3 D-type flip flops connected together with a common clock. The arrangement of the circuit is shown

below in figure 10.

This circuit can now be verified by putting in under a behavioural simulation to ensure it functions correctly. This circuit was

tested using every input combination and the simulated output was compared to the expected output. The simulation displayed a

timing diagram as seen in figure 11, which shows each input combination with its output between each vertical red line. The

timing diagram was checked to see that each output is the same as it’s corresponding output on the rising edge of each clock

pulse.

D1

D2

D3

Clock

Q1

Q2

Q3

A Input

B Input

Carry Input

Sum Output

Carry Output

A Input

B Input

Carry Input

Sum Output

Carry Output

A0

B0

C in

A1

B1

S0

S1

C out

 Figure 9: Combined full adders to
make dual 2-bit adder.

D

>Clk

Q D

>Clk

Q D

>Clk

Q Q1 D1 D2 Q2 D3 Q3

Clock
Figure 10: 3-bit output register.

Figure 11: 3-bit register timing diagram.

Flip Flop Inputs

Flip Flop Outputs

1 (Logic High)

0 (Logic Low)

Benjamin Griffiths (160159871)

6 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Now that all the modules below the highest level of the hierarchy design flow diagram have been completed, the 3-bit register

can be combined with the dual 2-bit adder. This is shown in figure 12, with the register connected to the 3-bit output from the

adder.

Finally, the complete system is verified using behavioural simulation, where every combination of the inputs is checked to see that

the correct sum is calculated at the output according to the systems truth table as seen in figure 13. The behavioural simulation

produced a timing diagram as seen in figure 14, where the output can be seen as the sum of the two 2-bit numbers on the rising

edge of each clock pulse.

 As seen in figure 14, all the possible input combinations between

the red vertical lines are summed and transferred to the output on the

rising edge of each clock pulse.

The finished circuit was then uploaded to the FPGA and was physically

tested to ensure is adds the two 2-bit numbers correctly and displays the

result with the clock is pulsed.

Input Output
B0 A0 B1 A0 C out S1 S0

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

S0

S1

C out

Ain

Bin

C in

Ain

Bin

D1

D2

D3

>Clk

Q1

Q2

Q3

S0

S1

C out

Clock

A0

B0

A1

B1

2-bit number input

2-bit number input

Carry input connected to ground

Figure 12: Complete dual 2-bit adder block diagram.

B0

A0

B1

A1

Clock

C out

S1

S0

Figure 13: Complete dual 2-bit adder truth table.

Figure 14: Complete dual 2-bit adder timing diagram.

2-bit input

Outputs

Benjamin Griffiths (160159871)

7 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Overall, the testing for this circuit was very thorough at every stage in the development. For the testing pattern, I chose to simply

increment the binary value of the input combination each time, so effectively every possible input combination is tested to ensure

that the particalar circuit operates exactly as expected. This testing method was also used to test the top level design, where

every combination of each 2-bit number was tested to make sure that both the sum is correct and that the sum is only shown on

the rising edge of a clock pulse.

This sort of thorough testing process would be essential if any small changes needed to be made to a particular piece of software

code, known as regression testing. This is where after even a slight alteration to an existing piece of software, testing is carried out

to ensure that the operation of the software is still as expected and that no bugs or errors have been introduced. Regression

testing could be linked with benefits of hierarchy design, where if a slight change is made, only the single module the change is

associated with would need to be tested. Whereas if the system was not designed as a hieracrchy model, it would very difficult to

find where possible sources or error could come from and potentially all parts of the system would need to be tested. For

example, in context of the design problem, by using the hierachy model, changing between the logic and multiplexer based adder

circuit was easy as changes only needed to be made and tested to one module.

The benefits in terms of cost and time reduction have also been made clear, as there was no circuit construction that needed to

be done, due to the FPGA being reprogrammable. For example, from a development perspective, to make a change to a system,

you would potentially need to completely redesign a circuit and produce it, costing money and time, where it’s just the case of

changing code and reprogramming for an FPGA.

In conclusion, by undertaking this design task, the key advantages of FPGA circuit design for rapid prototyping have been made

clear and the design problem was solved successfully without any errors. For example, by adopting a hieracrchy design flow for

the adder, it was possible to break down the circuit into several smaller and more simple modules, which could be easily designed

and tested before building up the system. This would make sourcing errors if they were to occur much easier each module could

be tested seperately compared to the entire system as a whole. There is not much that could be done to possibly improve this

design task.

References:

Unknown Author. (2016, July 20th). Basic FPGA Tutorial [Online]. Available: https://www.so-

logic.net/pl/knowledgebase/fpga_universe/tutorials/Basic_FPGA_Tutorial_Verilog

Microsoft. (2003). Regression Testing [Online]. Available: https://msdn.microsoft.com/en-us/library/aa292167(v=vs.71).aspx

1-CORE Technologies. (2009, February 11th). FPGA design flow overview [Online]. Available:

http://www.fpgacentral.com/docs/fpga-tutorial/fpga-design-flow-overview

