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Introduction:  
The topic of this report is component tolerance modelling, which involves analysing systems to see how their performance varies 
from the effects of component tolerance. The three systems to be analysed are a potential divider, a low-pass filter and a voltage 
limiting circuit. In order to analysis the effects of component tolerance on these systems, parameters such as the gain of the 
potential divider circuit or the corner frequency of the low-pass filter will be modelled for different tolerances of the resistors or 
capacitors used. The results of these models will be graphically displayed so that comparisons can be made to how individual 
component tolerance impacts the tolerance of the system as a whole.  

 
Methodology: 
This section will explain the methods and techniques used as well as the process of creating a component tolerance models for each 
circuit. 

Tolerance: 
The tolerance of an electronic component defines how much the actual value of that component can differ from its nominal value. 
For example, a resistor with a nominal resistance of 100Ω with a tolerance of 5% would be written as 100(1±0.05) Ω, meaning that 
is value in reality can range between 95Ω and 105Ω.  When designing a system, the tolerance of components must be taken into 
consideration so that the systems maximum operating range doesn’t exceed the specification while only using lower tolerance 
components where they are needed due to their higher cost.  

 
Yield: 
In order to determine the effects of using different tolerances, the yield is calculated, which is a representation of how many systems 
produced meet the design specification.  

The yield of a manufacturing process is defined by:   

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  
𝑁𝑁𝑁𝑁. 𝑁𝑁𝑜𝑜 𝑝𝑝𝑝𝑝𝑁𝑁𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝ℎ𝑎𝑎𝑝𝑝 𝑚𝑚𝑌𝑌𝑌𝑌𝑝𝑝 𝑝𝑝𝑝𝑝𝑌𝑌𝑝𝑝𝑌𝑌𝑜𝑜𝑌𝑌𝑝𝑝𝑎𝑎𝑝𝑝𝑌𝑌𝑁𝑁𝑠𝑠

𝑇𝑇𝑁𝑁𝑝𝑝𝑎𝑎𝑌𝑌 𝑠𝑠𝑁𝑁. 𝑁𝑁𝑜𝑜 𝑝𝑝𝑝𝑝𝑁𝑁𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑁𝑁𝑌𝑌𝑝𝑝𝑝𝑝𝑌𝑌𝑌𝑌  

For example, if a 1000 systems are made, but only 700 are within the design specification, then there would be a 70% yield. As 
system designers, maximising yield is crucial to maximise profits while minimising waste. 

 
Extreme Value Analysis: 
In order to design a system so that is cannot operate beyond its set operating range, extreme value analysis can indicate a systems 
maximum theoretical operating range for a given component tolerance. Choosing component tolerances correctly will ensure that 
the theoretical maximum operating range cannot exceed the permitted range, therefore increasing the yield. 

Extreme value analysis for a given component tolerance for a circuit involves calculating the maximum and minimum theoretical 
output. If there are multiple components in the system, it has to be determined if certain components are to have positive or 
negative tolerances in order to maximum the effect and achieve the largest possible operating range.  

 
Monte Carlo Analysis: 
Monte Carlo analysis involves simulating a circuit many (thousand) times, with each simulation having component values chosen at 
random between set limits. In these simulations, many different component values and their effects on the circuit are evaluated, 
so it can give the designers a spread of data that shows the variation of the systems performance.  
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In the context of the simulations to be performed in this report, both Uniform component distributions and Gaussian component 
distributions are used to model the circuits. Uniform distribution allows all values in its range to be equally probability of occurring, 
such as in in figure 1. However, Gaussian distribution resembles a bell curve, where the probability of a value occurring decreases 
the further it is from its nominal value, as seen in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

The equations for a single simulation of a component value such as a resistor are: 

 

 Uniform 
Distribution 

𝑅𝑅 =  𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛(1 + 2(𝑥𝑥 − 0.5)Δ𝑅𝑅) 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛= Nominal resistor value 
𝑥𝑥 = Uniformly distributed random number between 0, 1 
Δ𝑅𝑅 = Resistors tolerance 

 Gaussian 
Distribution 𝑅𝑅 =  𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛(1 +

Δ𝑅𝑅
3 ×𝑦𝑦  ) 

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛= Nominal resistor value 
𝑦𝑦 = Normally distributed random number between 0, 1 
Δ𝑅𝑅 = Resistors tolerance 

 

The first circuit to analyse is the potential divider as seen in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Vin 

Vout 

Figure 3: Potential Divider Circuit. 

Figure 1: Uniform Distribution example. Figure 2: Gaussian Distribution example. 
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The purpose of modelling this circuit is to see how the voltage division ratio is affected by various different tolerances of the 
resistors. In the case of this model, the tolerance will always be the same for R1 as it is for R2. The values of R1 and R2 are 3kΩ and 
1kΩ respectively and the circuit is specified to have a nominal gain of 0.25 ±2%. 

The expression for the voltage division ratio, or the gain of the circuit is the voltage across R2 divided by the total voltage across R1 
and R2. 

𝐺𝐺 =  𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

 and  𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =  𝑉𝑉𝑖𝑖𝑛𝑛
𝑅𝑅2

𝑅𝑅1+𝑅𝑅2
 therefore 𝐺𝐺 =  𝑅𝑅2

𝑅𝑅1+𝑅𝑅2
 

Task 1: 

The first task is to use extreme value analysis to determine the gain tolerance, ΔG for different resistor tolerances, ΔR. 

The gain when taking tolerance into account is 𝐺𝐺(1 ± Δ𝐺𝐺) =  𝑅𝑅2(1±Δ𝑅𝑅)
𝑅𝑅1(1±Δ𝑅𝑅)+𝑅𝑅2(1±Δ𝑅𝑅)

 

The highest possible gain is defined by  𝐺𝐺(1 + Δ𝐺𝐺)  =  𝑅𝑅2(1+Δ𝑅𝑅)
𝑅𝑅1(1−Δ𝑅𝑅)+𝑅𝑅2(1+Δ𝑅𝑅)

  

The lowest possible gain is defined by  𝐺𝐺(1 − Δ𝐺𝐺) =  𝑅𝑅2(1−Δ𝑅𝑅)
𝑅𝑅1(1+Δ𝑅𝑅)+𝑅𝑅2(1−Δ𝑅𝑅)

  

Therefore, 

The highest possible positive gain tolerance is  +Δ𝐺𝐺 = � 𝑅𝑅2(1+Δ𝑅𝑅)
𝑅𝑅1(1−Δ𝑅𝑅)+𝑅𝑅2(1+Δ𝑅𝑅)

𝐺𝐺⁄ � − 1  

The highest possible negative gain tolerance is  −Δ𝐺𝐺 = � 𝑅𝑅2(1+Δ𝑅𝑅)
𝑅𝑅1(1−Δ𝑅𝑅)+𝑅𝑅2(1+Δ𝑅𝑅)

𝐺𝐺⁄ � − 1 

In practice these 2 values of ΔG will be slightly different, so picking the highest value out of the 2 will reliably determine whether it 
actually fits in the 2% tolerance range or not. This process should be repeated for ΔR = 0.01, ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1 to 
determine which values of ΔR do or do not produce a gain tolerance that meets the specification. 

Task 2: 

The second task is to perform a Monte Carlo analysis to determine the yield for a run of 1000 circuits, with the resistor values 
following a Uniform distribution, then calculate the yield and produce a histogram of the gain. Repeat this procedure for ΔR = 0.01, 
ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1.  

For each run of the Monte Carlo analysis, the values of R1 and R2 must be re-calculated so that a different random value is chosen. 

For example, each run of the simulation should consist of: 

𝑅𝑅1 = 3000(1 + 2(𝑥𝑥 − 0.5)Δ𝑅𝑅)  

𝑅𝑅2 = 1000(1 + 2(𝑥𝑥 − 0.5)Δ𝑅𝑅)  

𝐺𝐺 =  
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
 

Following this, plot a graph of resistor tolerance, ΔR against Yield. 

Task 3: 

Using the equation for the highest or lowest possible gain tolerance, find a value of resistor tolerance, ΔR, that will ensure a 100% 
yield so that the circuits gain is always permitted as per the specification. Prove this graphically using a Monte Carlo analysis of 1000 
circuits with the resistors following a uniform distribution.                                                                            
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The second circuit to analyse is the low-pass filter as seen in Figure 4. 

 

 

 

 

 

 

 

 

 

The purpose of modelling this circuit is to see how the corner frequency is affected by varying the tolerance of the resistors. The 
capacitor has the value of 100nF with a fixed tolerance of ±10%, and the resistor has a varying tolerance with a nominal value of 
1.6kΩ. This circuit is specified to have a nominal corner frequency, fC, of 1kHz ±5%.  

The expression for the corner frequency is  𝑜𝑜𝐶𝐶 =  1
2𝜋𝜋𝑅𝑅𝐶𝐶

 

Task 1: 

The first task is to use extreme value analysis to determine the corner frequency tolerance, ΔfC, for a constant capacitor tolerance, 
ΔC, but a varying resistor tolerance, ΔR.  

The corner frequency when taking tolerance into account is 𝑜𝑜𝐶𝐶(1 ± Δ𝑜𝑜𝐶𝐶) =  1
2𝜋𝜋×𝑅𝑅(1±Δ𝑅𝑅)×𝐶𝐶(1±Δ𝐶𝐶)

 

The highest possible corner frequency is defined by 𝑜𝑜𝐶𝐶(1 + Δ𝑜𝑜𝐶𝐶) =  1
2𝜋𝜋×𝑅𝑅(1−Δ𝑅𝑅)×𝐶𝐶(1−Δ𝐶𝐶)

 

The lowest possible corner frequency is defined by 𝑜𝑜𝐶𝐶(1 − Δ𝑜𝑜𝐶𝐶) =  1
2𝜋𝜋×𝑅𝑅(1+Δ𝑅𝑅)×𝐶𝐶(1+Δ𝐶𝐶)

 

Therefore, 

The highest possible corner frequency is defined by +Δ𝑜𝑜𝐶𝐶 =  � 1
2𝜋𝜋×𝑅𝑅(1−Δ𝑅𝑅)×𝐶𝐶(1−Δ𝐶𝐶)

𝑜𝑜𝐶𝐶� � − 1 

The lowest possible corner frequency is defined by −Δ𝑜𝑜𝐶𝐶 =  � 1
2𝜋𝜋×𝑅𝑅(1+Δ𝑅𝑅)×𝐶𝐶(1+Δ𝐶𝐶)

𝑜𝑜𝐶𝐶� � − 1 

Similarly, to the potential divider circuit, the higher tolerance from the two should be picked. This process should be repeated for 
ΔR = 0.01, ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1, while keeping ΔC constant at ±10%. 

Task 2: 

The second task is to perform a Monte Carlo analysis to determine the yield for a run of 1000 circuits, with the resistor and capacitor 
values following a Gaussian distribution, then calculate the yield and produce a histogram of the gain. Repeat this procedure for ΔR 
= 0.01, ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1, while keeping ΔC constant at ±10%. Following this, plot a graph of resistor tolerance, ΔR, 
against yield. 

Task 3: 

Using the equation for highest or lowest possible corner frequency tolerance, find a value of capacitor tolerance, ΔC, with ΔR fixed 
at ±2%, that will ensure a 100% yield so that the circuits corner frequency is always permitted as per the specification. Prove this 
graphically using a Monte Carlo analysis of 1000 circuits with the capacitor following a Gaussian and a Uniform distribution. 

 

Vin 

Vout 

Figure 4: Low-Pass Filter Circuit. 
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The third circuit to analyse is the voltage limiting circuit as seen in figure 5. 

                                                                            

 

 

 

 

 

 

 

 

 

The purpose of modelling this circuit is to see how the diode limits the output voltage as well as to see the effects of component 
tolerance on the maximum output voltage. The values of the components are as follows: R1=2.2kΩ, R2=3.3kΩ, R3=10kΩ and 
Vd=0.7V. The input voltage is a sinusoidal waveform of frequency 100Hz with a peak voltage of 5V, and the design specification 
states that the maximum output voltage must not exceed 3.9V (Vout<3.9V). 

Task 1: 

The first task is to find an expression for Vin at the onset of limiting (𝑉𝑉𝑖𝑖𝑛𝑛(𝑙𝑙𝑖𝑖𝑛𝑛)) and an expression for the output voltage during 
limiting (𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜). 

Following this, calculate the input voltage at the onset of limiting and using the expression for Vout, plot a graph of the output 
voltage as a function of time, for 2 full cycles of the input voltage. 

To find the maximum output voltage, use the expression for Vout and set Vin to its maximum value of 5V. 

At the maximum output voltage, calculate the instantaneous power dissipation in each resistor using 𝑃𝑃 = 𝑉𝑉2
𝑅𝑅� . 

Task 2: 

In order to analyse the effects that R3 has on the maximum output voltage, normalise all resistors to R1, so that all resistors in the 
circuit can be expressed as a factor of R1. This helps to massively simplify the expression for the maximum voltage while giving the 
capability to effectively vary the value of R3. Substitute the new expressions of each resistor value into the expressions for Vout 
and plot a graph of Vout varying with R3. 

Task 3: 

Derive an expression for the maximum output voltage tolerance using extreme value analysis, assuming that ΔRΔR is negligible so 
it can be ignored. 

Using this expression, with resistor tolerance values of ΔR = 0.01, ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1, calculate the maximum output 
voltage and compare them to the specification. 

Perform a Monte Carlo analysis of 1000 circuits with the components following a uniform distribution to obtain the yield for ΔR = 
0.01, ΔR = 0.02, ΔR = 0.05 and ΔR = 0.1. Produce a histogram for each ΔR. 

Lastly, plot a graph of yield against tolerance. 

 

 

Vin 

Vout 

Figure 5: Voltage Limiting Circuit. 

VS 

VX 
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Results: 

Potential Divider Circuit: 

The gain tolerance, ΔG, as ΔR varies is displayed below: 

Δ𝑅𝑅 = 0.01 +Δ𝐺𝐺 = 0.01507 𝑁𝑁𝑝𝑝 1.507% 
 −Δ𝐺𝐺 = 0.01493 𝑁𝑁𝑝𝑝 1.493% 
    
Δ𝑅𝑅 = 0.02 +Δ𝐺𝐺 = 0.03030 𝑁𝑁𝑝𝑝 3.030% 
 −Δ𝐺𝐺 = 0.02970 𝑁𝑁𝑝𝑝 2.970% 
    
Δ𝑅𝑅 = 0.05 +Δ𝐺𝐺 = 0.07692 𝑁𝑁𝑝𝑝 7.692% 
 −Δ𝐺𝐺 = 0.07317 𝑁𝑁𝑝𝑝 7.317% 
    
Δ𝑅𝑅 = 0.1 +Δ𝐺𝐺 = 0.1579 𝑁𝑁𝑝𝑝 15.79% 
 −Δ𝐺𝐺 = 0.1429 𝑁𝑁𝑝𝑝 14.29% 

 

It can be seen that only ΔR = 0.01 produces a value of ΔG that is within ±2%. This is because higher tolerances cause the extremes 
of each resistor value to shift further from their nominal values, hence increasing the overall gain tolerance. 

The histograms associated with each resistor tolerance are shown below in figures 6-9. 

 
Figure 6: Gain Histogram for ΔR=0.01. Figure 7: Gain histogram for ΔR=0.02. 

Figure 8: Gain Histogram for ΔR=0.05. Figure 9: Gain Histogram for ΔR=0.1. 

ΔG = +0.02

 

ΔG = -0.02

 

ΔG = +0.02

 

ΔG = -0.02

 

ΔG = +0.02

 

ΔG = -0.02

 

ΔG = +0.02

 

ΔG = -0.02

 

ΔR = 0.01 ΔR = 0.02 

ΔR = 0.05 ΔR = 0.1 
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A clear pattern can be seen from figures 6-9, where the spread of the histogram gradually increases. For example, the shape of 
the histogram in figure 6 is very narrow, with a low number of occurrences deviating from the nominal value, due to low resistor 
tolerance, ΔR of 1%. However, the shape of the histogram in figure 9 is very wide, with a high proportion of occurrences being far 
above or below the nominal value, due to the high resistor tolerance, ΔR of 10%. As seen using the dashed limit lines, only 
ΔR=0.01 met the specification. 

 

A plot of yield against tolerance is shown below in figure 10. 

 

 

As expected, as the resistor tolerance decreases, the yield increases, initially at a high rate which then slows down as the 
tolerance approaches 0%. Although it cannot be seen easily in figure 10, the cropped section of the graph shown in figure 11 
shows how the yield suddenly jumps to 100% as the tolerance is reduced to approximately 1.2% - 1.4%.   

 

 

 

 

 

 

 

 

Figure 10: Resistor Tolerance against Gain Yield. 

How Yield Varies with Tolerance 
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The point at which the yield jumps to 100% is the maximum resistor tolerance that ensures all the circuits meet the specification. 
From this simulation, a value between 1.2% and 1.4% is expected when compared to the results from the extreme value analysis, 
where the 2% gain tolerance, ΔG is met between resistor tolerances, ΔR, of 1% and 2%. 

 

This maximum resistor tolerance, ΔR, that ensures a 100% yield is calculated below: 

 

The maximum positive resistor tolerance 0.25(1 + 0.1) =  1000(1+Δ𝑅𝑅)
3000(1−Δ𝑅𝑅)+1000(1+Δ𝑅𝑅)

→ +Δ𝑅𝑅 =  1.325%  

The maximum negative resistor tolerance 0.25(1 − 0.1) =  1000(1−Δ𝑅𝑅)
3000(1+Δ𝑅𝑅)+1000(1−Δ𝑅𝑅)

→ −Δ𝑅𝑅 =  1.342%  

 

Therefore, the maximum tolerance to reliably make every circuit meet the specification is ΔR = 1.325%, which realistically would 
not be achievable or economically viable, so in practice a resistor tolerance of 1% would probably be adopted to ensure that the 
design specification is always met. 

 

 

 

 

 

 

 

 

 

Figure 11: 100% Yield Transition Region 

Maximum Tolerance to 
achieve 100% yield. 

Close of up 100% Yield Region 
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Below in figure 12 is a histogram to prove that a resistor tolerance of 1.325% achieves a 100% yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extremes of the 2% gain tolerance, at a gain of 0.245 and 0.255 are displayed with the red dotted lines, and as seen, the 
histograms values do not go outside of these barriers – therefore achieving a 100% yield. 

 

Low-Pass Filter Circuit: 

The corner frequency tolerance, Δfc, as ΔR varies is displayed below: 

Δ𝑅𝑅 = 0.01 +Δ𝑜𝑜𝐶𝐶 = 0.1164 𝑁𝑁𝑝𝑝 11.64% 
Δ𝐶𝐶 = 0.1 −Δ𝑜𝑜𝐶𝐶 = 0.1047 𝑁𝑁𝑝𝑝 10.47% 
    
Δ𝑅𝑅 = 0.02 +Δ𝑜𝑜𝐶𝐶 = 0.1278 𝑁𝑁𝑝𝑝 12.78% 
Δ𝐶𝐶 = 0.1 −Δ𝑜𝑜𝐶𝐶 = 0.1134 𝑁𝑁𝑝𝑝 11.34% 
    
Δ𝑅𝑅 = 0.05 +Δ𝑜𝑜𝐶𝐶 = 0.1634 𝑁𝑁𝑝𝑝 16.34% 
Δ𝐶𝐶 = 0.1 −Δ𝑜𝑜𝐶𝐶 = 0.1388 𝑁𝑁𝑝𝑝 13.88% 
    
Δ𝑅𝑅 = 0.1 +Δ𝑜𝑜𝐶𝐶 = 0.2280 𝑁𝑁𝑝𝑝 22.80% 
Δ𝐶𝐶 = 0.1 −Δ𝑜𝑜𝐶𝐶 = 0.1779 𝑁𝑁𝑝𝑝 17.79% 

 

It can be seen that none of these values of resistor tolerance, ΔR produce extreme values that are within the specified ΔfC = 5%. 
Which is probably due to the large 10% capacitor tolerance, which is having a larger effect on the extreme values than the resistor 
tolerances. From this, it is obvious that in order to reliably design this circuit, a lower tolerance capacitor needs to be used.  

 

 

 

 

 

 

Figure 12: Maximum ΔR Histogram. 

Histogram where ΔR = 1.325% 
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The histograms associated with each resistors tolerance are shown below in figures 13-16. 

 

 

As seen, none of them meet the specification, and histogram in figure 9 has a very similar spread either side of the 5% corner 
frequency limit lines to the spread of figure 10. A noticeable change is only really obvious when ΔR reaches ±10% as seen in figure 
15, so the resistor tolerance is not effective due to the large capacitor tolerance. 

 

 

 

 

 

 

 

 

 

Figure 13: Corner Frequency Histogram for ΔR=0.01. Figure 14: Corner Frequency Histogram for ΔR=0.02

 

Figure 15: Corner Frequency Histogram for ΔR=0.05. Figure 15: Corner Frequency Histogram for ΔR=0.1. 

ΔR = 0.01 ΔR = 0.02

 

ΔR = 0.05 ΔR = 0.1 

ΔfC = +0.05

 

ΔfC = -0.05

 

ΔfC = +0.05

 

ΔfC = -0.05

 

ΔfC = +0.05

 

ΔfC = -0.05

 

ΔfC = +0.05

 

ΔfC = -0.05
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A plot of tolerance against yield is shown below in figure 16. 

 

 

As expected, as the tolerance of the resistor decreases, the yield increases as a fairly steady rate, until around ΔR=5%, where the 
yield slightly reduces to a value of around 87%. As seen, the yield never reaches 100%, even when the resistor tolerance is 0%, 
therefore the capacitor tolerance is too large. 

 

The maximum capacitor tolerance, ΔC while ΔR is fixed at 2% is calculated below: 

The maximum positive resistor tolerance 1000(1 − 0.05) = 1
2𝜋𝜋×1600(1+0.02)×100×10−9(1+Δ𝐶𝐶)

→ +Δ𝐶𝐶 =  2.654%

  

The maximum negative resistor tolerance 1000(1 + 0.05) = 1
2𝜋𝜋×1600(1−0.02)×100×10−9(1−Δ𝐶𝐶)

→ −Δ𝐶𝐶 =  3.331% 

 

Therefore, the highest possible tolerance of capacitor to reliably ensure that every circuit meets the specification is ΔC=2.654%. It 
is now obvious how the 10% tolerance capacitor used was not suitable for the circuit in order to meet the specification, 
considering how much lower the calculated maximum tolerance is. 

 

 

 

 

 

 

 

Figure 16: Resistor Tolerance against Yield Graph. 

Yield as a function of resistor tolerance 



Benjamin Griffiths (160159871) 
 

12 | P a g e           Electronic & Electrical Engineering  
The University of Sheffield 

Proof that using this tolerance will achieve 100% yield is shown below, using a Uniform distribution and a Gaussian distribution as 
seen in figure 17 and 18 respectively. 

 

It can be seen that the occurrences spread over a wider frequency range in figure 17, compared to figure 18, which has a 
narrower spread. This is due to the Gaussian distribution tending to follow a bell curve shape as discussed in the methodology 
section of this report, which would result in a higher proportion of occurrences being closer to the mean or nominal value in 
comparison to the uniform distribution. However, as seen using the red limit lines, both graphs show that the yield is 100%. 

 

Voltage Limiting Circuit: 

The expression for the input voltage at the onset of the limiting action is 𝑉𝑉𝑖𝑖𝑛𝑛(𝑙𝑙𝑖𝑖𝑛𝑛) = 𝑉𝑉𝑥𝑥 + 0.7 

Where: 

𝑉𝑉𝑥𝑥 =
𝑉𝑉𝑆𝑆×𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

 

Therefore: 

𝑉𝑉𝑖𝑖𝑛𝑛(𝑙𝑙𝑖𝑖𝑛𝑛) =
𝑉𝑉𝑆𝑆×𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

+ 0.7 

 

The expression for the output voltage during limiting is 𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜(𝑙𝑙𝑖𝑖𝑛𝑛) = 𝑉𝑉𝑥𝑥 + 0.7 

Where:  

𝑉𝑉𝑥𝑥 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)(𝑅𝑅1//𝑅𝑅2)
𝑅𝑅3 + (𝑅𝑅1//𝑅𝑅2) +

5(𝑅𝑅3//𝑅𝑅2)
𝑅𝑅1 + (𝑅𝑅3//𝑅𝑅2) 

Therefore: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7) � 𝑅𝑅1×𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
�

𝑅𝑅3 + � 𝑅𝑅1×𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

�
+

𝑉𝑉𝑆𝑆 �
𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�

𝑅𝑅1 + � 𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�
+ 0.7 

 

Figure 17: Max ΔR Uniform Distribution. Figure 18: Max ΔR Gaussian Distribution. 

Normal Distribution Gaussian Distribution 
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The value of the input voltage on the onset of limiting is: 

𝑉𝑉𝑖𝑖𝑛𝑛(𝑙𝑙𝑖𝑖𝑛𝑛) =
5×3300

2200 + 3300
+ 0.7 = 3.7𝑉𝑉 

 

Shown below in figure 19 is a plot of Vin and Vout against time. 

 

 

As expected, displayed in figure 19, the output voltage follows the input voltage, up until Vin = 3.7V, where the diode begins to 
conduct. When the diode conducts, the output voltage is no longer equal to the input voltage, but it appears to rise at a much 
lower rate until its peak voltage, with the output voltage re-joining the input voltage when the input voltage drops back down to 
3.7V. 

This peak output voltage occurs when the input voltage is at its maximum (5V), and can be calculated as shown below: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜(𝑛𝑛𝑚𝑚𝑥𝑥) =
(5 − 0.7) � 2200×3300

2200 + 3300�

10000 + � 2200×3300
2200 + 3300�

+
5 � 10000×3300

10000 + 3300�

2200 + � 10000×3300
10000 + 3300�

+ 0.7 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜(𝑛𝑛𝑚𝑚𝑥𝑥) = 3.85𝑉𝑉 

 

At this maximum output voltage, the instantaneous power dissipation in each resistor is shown below: 

 

𝑃𝑃𝑅𝑅1 =
(5− 3.15)2

2200 = 1.56𝑚𝑚𝑚𝑚 𝑃𝑃𝑅𝑅2 =
(3.15)2

3300 = 3.01𝑚𝑚𝑚𝑚 

 

𝑃𝑃𝑅𝑅3 =
(5− 3.85)2

10000 = 0.132𝑚𝑚𝑚𝑚 

Figure 19: Vin & Vout as a function of time. 

Maximum Vout 

Vin and Vout as a function of time 
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The derivation of the formula that gives the maximum output voltage as a function of R3 using k is given below: 

Normalise resistors to R1 which leads to 𝑅𝑅2 = 1.5×𝑅𝑅1 and 𝑅𝑅3 = 50
11� 𝑅𝑅1, but for the purpose of varying R3, it will be set to  

𝑅𝑅3 = 𝑘𝑘×𝑅𝑅1 where 𝑘𝑘 is the variable that is varied in order to effectively change the value of R3. 

Now, all values of R2 and R3 are set to be a function of R1: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7) � 𝑅𝑅1×𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
�

𝑅𝑅3 + � 𝑅𝑅1×𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

�
+

𝑉𝑉𝑆𝑆 �
𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�

𝑅𝑅1 + � 𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�
+ 0.7 

The maximum output voltage is when 𝑉𝑉𝑖𝑖𝑛𝑛 = 5𝑉𝑉: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
4.3 �𝑅𝑅1(𝑅𝑅1×1.5)

𝑅𝑅1(1.5 + 1)�

𝑘𝑘𝑅𝑅1 + �𝑅𝑅1(𝑅𝑅1×1.5)
𝑅𝑅1(1.5 + 1)�

+
5 �𝑅𝑅1(1.5×𝑘𝑘𝑅𝑅1)

𝑅𝑅1(1.5 + 𝑘𝑘) �

𝑅𝑅1 + �𝑅𝑅1(1.5×𝑘𝑘𝑅𝑅1)
𝑅𝑅1(1.5 + 𝑘𝑘) �

+ 0.7 

R1 terms are cancelled out: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
4.3 �1.5𝑅𝑅1

2.5 �

𝑘𝑘𝑅𝑅1 + �1.5𝑅𝑅1
2.5 �

+
5 �1.5×𝑘𝑘𝑅𝑅1

1.5 + 𝑘𝑘 �

𝑅𝑅1 + �1.5×𝑘𝑘𝑅𝑅1
1.5 + 𝑘𝑘 �

+ 0.7 

Second fraction multiplied on top and bottom by (1.5 + 𝑘𝑘): 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
2.58𝑅𝑅1

𝑘𝑘𝑅𝑅1 + 3
5𝑅𝑅1

+
15
2 𝑘𝑘𝑅𝑅1

𝑅𝑅1(1.5 + 𝑘𝑘) + (1.5×𝑘𝑘𝑅𝑅1) + 0.7 

Second fraction multiplied on top and bottom by 2: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
2.58𝑅𝑅1

𝑅𝑅1(𝑘𝑘 + 0.6) +
15𝑘𝑘𝑅𝑅1

2𝑅𝑅1(1.5 + 𝑘𝑘) + 3𝑘𝑘𝑅𝑅1
+ 0.7 

Cancelling R1 terms: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
2.58
𝑘𝑘 + 0.6 +

15𝑘𝑘
5𝑘𝑘 + 3 + 0.7 

Make denominators equal by dividing top and bottom of second equation by 5: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
2.58
𝑘𝑘 + 0.6 +

3𝑘𝑘
𝑘𝑘 + 0.6 +

0.7(𝑘𝑘 + 0.6)
(𝑘𝑘 + 0.6)  

Add numerators together: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
3.7𝑘𝑘 + 3
𝑘𝑘 + 0.6  
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To vary R3 from a low to a high value, the variable 𝑘𝑘 is varied from 0.001 to 1000, where Vout should equal 3.85V when 𝑘𝑘 =
50

11� , as previously calculated. The maximum output voltage as the effective value of R3 varies is shown below in figure 20. 

 

 

 

From figure 12, as 𝑘𝑘 is reduced to almost zero, the value of R3 is almost zero, hence there won’t be a voltage drop across R3, 
which is why the output voltage will equal as the maximum input voltage of 5V. However, as 𝑘𝑘 is increased, the value of R3 and 
therefore the voltage across R3 increases, resulting in a reduction of the maximum output voltage. To show that this 
normalisation is correct, the point at which 𝑘𝑘 = 50

11�  has been highlighted to show that is provides an output voltage of 3.85V 
as previously calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Vout as R3 changes. 

𝑘𝑘 = 50
11� where 𝑅𝑅3 = 10𝑘𝑘Ω 

Vout(max) as R3 varies 
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The derivation for the tolerance of the maximum output voltage in terms of the resistor tolerance, ΔR is shown below: 

Maximum output voltage (Vin=5V) 
𝑅𝑅1 = 𝑅𝑅1(1−  Δ𝑅𝑅1) 
𝑅𝑅2 = 𝑅𝑅2(1 +  Δ𝑅𝑅2) 
𝑅𝑅3 = 𝑅𝑅3(1 −  Δ𝑅𝑅3) 

 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7) � 𝑅𝑅1×𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
�

𝑅𝑅3 + � 𝑅𝑅1×𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

�
+

𝑉𝑉𝑆𝑆 �
𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�

𝑅𝑅1 + � 𝑅𝑅3×𝑅𝑅2
𝑅𝑅3 + 𝑅𝑅2

�
+ 0.7 

 

Divide through: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)

𝑅𝑅3 �
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1×𝑅𝑅2

� + 1
+

𝑉𝑉𝑆𝑆

𝑅𝑅1 �
𝑅𝑅3 + 𝑅𝑅2
𝑅𝑅3×𝑅𝑅2

� + 1
+ 0.7 

 

Simplify: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)
𝑅𝑅3
𝑅𝑅1

+ 𝑅𝑅3
𝑅𝑅2

+ 1
+

𝑉𝑉𝑆𝑆
𝑅𝑅1
𝑅𝑅2

+ 𝑅𝑅1
𝑅𝑅3

+ 1
+ 0.7 

 

Include tolerance of resistors: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜(1 + Δ𝑉𝑉𝑛𝑛𝑚𝑚𝑥𝑥) =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)

𝑅𝑅3(1 − Δ𝑅𝑅)
𝑅𝑅1(1 − Δ𝑅𝑅) + 𝑅𝑅3(1 − Δ𝑅𝑅)

𝑅𝑅2(1 + Δ𝑅𝑅) + 1
+

𝑉𝑉𝑆𝑆
𝑅𝑅1(1 − Δ𝑅𝑅)
𝑅𝑅2(1 + Δ𝑅𝑅) + 𝑅𝑅1(1 − Δ𝑅𝑅)

𝑅𝑅3(1 − Δ𝑅𝑅) + 1
+ 0.7 

 

Cancel terms where possible: 

𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜(1 + Δ𝑉𝑉𝑛𝑛𝑚𝑚𝑥𝑥) =
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)

𝑅𝑅3
𝑅𝑅1

+ 𝑅𝑅3(1 − Δ𝑅𝑅)
𝑅𝑅2(1 + Δ𝑅𝑅) + 1

+
𝑉𝑉𝑆𝑆

𝑅𝑅1(1 − Δ𝑅𝑅)
𝑅𝑅2(1 + Δ𝑅𝑅) + 𝑅𝑅1

𝑅𝑅3
+ 1

+ 0.7 

 

Rearrange to find ΔVmax: 

Δ𝑉𝑉𝑛𝑛𝑚𝑚𝑥𝑥 =  �
(𝑉𝑉𝑖𝑖𝑛𝑛 − 0.7)

𝑅𝑅3
𝑅𝑅1

+ 𝑅𝑅3(1 − Δ𝑅𝑅)
𝑅𝑅2(1 + Δ𝑅𝑅) + 1

+
𝑉𝑉𝑆𝑆

𝑅𝑅1(1 − Δ𝑅𝑅)
𝑅𝑅2(1 + Δ𝑅𝑅) + 𝑅𝑅1

𝑅𝑅3
+ 1

+ 0.7 3.85� � − 1 
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The extreme values of Vout are calculated below using the expression for 𝑉𝑉𝑛𝑛𝑚𝑚𝑥𝑥: 

Δ𝑅𝑅 = 0.01 𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =  3.8738 
  
Δ𝑅𝑅 = 0.02 𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =  3.8959 
  
Δ𝑅𝑅 = 0.05 𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =  3.9613 
  
Δ𝑅𝑅 = 0.1 𝑉𝑉𝑛𝑛𝑜𝑜𝑜𝑜 =  4.0680 

 

From this data, it can be said that values of ΔR above 0.02 cause the output voltage to exceed the limit of 3.9V.  

The histograms for the output voltage for each resistor tolerance are shown below in figures 21 – 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Max Vout Histogram for ΔR=0.02. 

Figure 23: Max Vout Histogram for ΔR=0.05. Figure 24: Max Vout Histogram for ΔR=0.1. 

Figure 21: Max Vout Histogram for ΔR=0.01. 

ΔR = 0.01 ΔR = 0.02

 

ΔR = 0.05 ΔR = 0.1 

3.9V 3.9V 

3.9V 3.9V 
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From the histograms, figure 12 and 13 shows that all the occurrences are below 3.9V as indicated by the dashed red vertical line. 
However, ΔR=0.05 and ΔR=0.1 have occurrences that are above 3.9V, hence not meeting the specification. 

A graph of yield against resistor tolerance is shown below in figure 25. 

 

 

As expected, the yield is constant at 100% as the yield initially increases, until a certain point where the yield decreases thereafter. 

The point at which the yield begins to drop is the maximum tolerance to ensure that the circuit always meets the specification, 
and can be seen clearly in figure 26. 

From the extreme value analysis, the maximum 
tolerance to achieve 100% yield was between 2% and 
5%, which can be more accurately measured from this 
cropped region of the graph which shows the tolerance 
to be approximately 2.25%. 

 

 

 

 

 

 

 

 

 

 

Figure 25: Max Vout as a function of resistor tolerance. 

Figure 26: 100% Yield region. 
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Conclusion: 

The models made using MATLAB successfully showed the effects of component tolerance on the performance electronic circuits 
and demonstrated the various methods that can be deployed to choose the correct tolerance for certain applications. Using 
MATLAB and Monte Carlo analysis enabled trends in data to be visualised to predict the variation of system performance. 

Potential Divider: 

The main conclusion to draw from the first circuit is that in order to meet the specification, the tolerance of the resistors need to 
be under 1.3%, which in practice would make 1% tolerance resistors the suitable choice for its application. 

Low-Pass Filter: 

The main conclusion to draw from the second circuit is that the capacitor tolerance is too high for this application because it 
doesn’t meet the specification even when the tolerance of the resistors is varied. This is true because the calculated maximum ΔC 
for ΔR=0.02 was 2.65%, which is far less than 10%. 

Voltage Limiting Circuit: 

The main conclusions to draw from third circuit is that in order for the circuit to meet the specification, the tolerance of the 
resistors need to be approximately 2%. The models made also revealed the effects of changing the value of R3 can influence the 
output voltage. 

 

 


