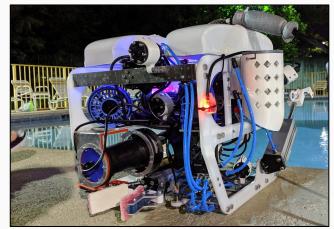


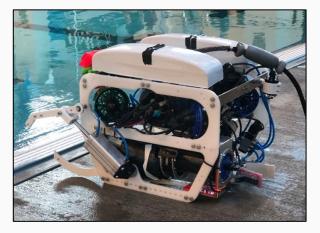
Electronic Control System for an Underwater ROV

Benjamin Griffiths, Henry O'Keeffe, Joe Orford & George Osmond



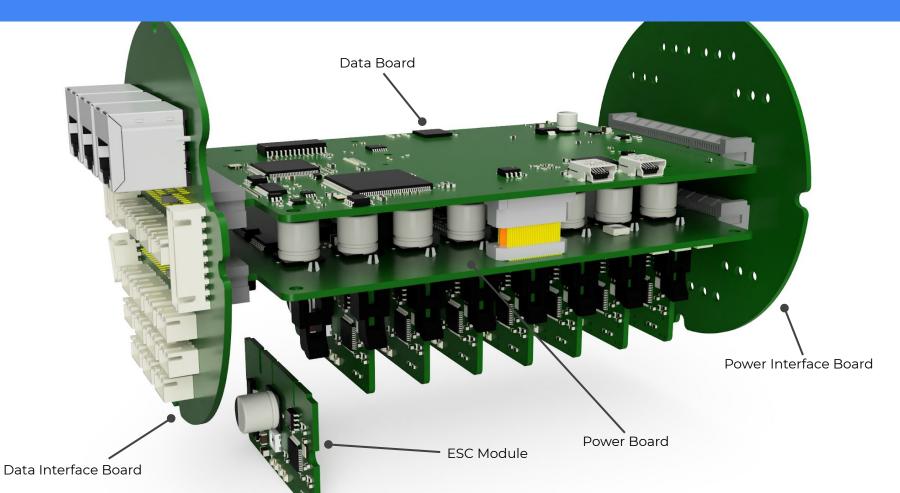
Introduction - [Henry]

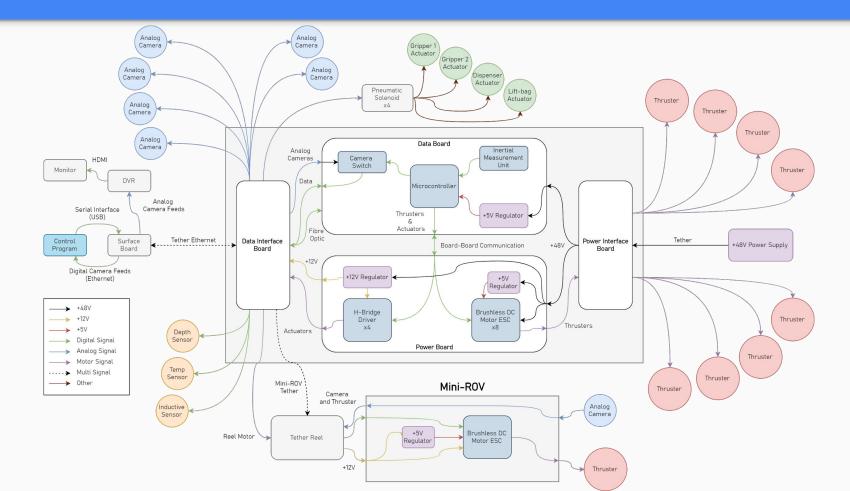
- → Competing in the 2020 Marine Advanced Technology Education (MATE) ROV Competition.
- → Competition held in the USA against universities from around the world (1400 students last year).
- → Design and build an underwater remotely operated vehicle (ROV) to complete a range of underwater tasks within 15 minutes.
- → Tasks include removing plastic debris, autonomous motion, computer vision, picking/placing objects, underwater maintenance etc.
- → 1st in the UK and 11th worldwide in the 2019 competition.




Aims & Objectives - [Joe]

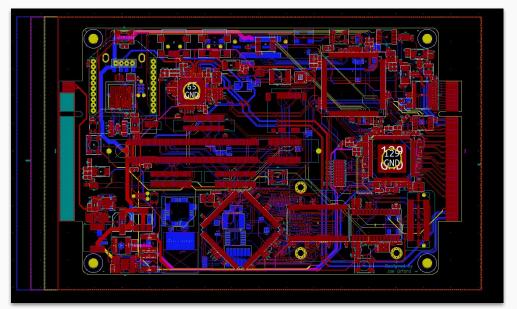
- → Design, manufacture and test the electronic control system for the ROV.
 - Robust communication system with backup systems in place
 - High resolution and low latency video from multiple angles
 - Monitor all critical system characteristics for performance and fault monitoring
 - Control 9 underwater thrusters to achieve precise control over the ROV's position
 - High efficiency operation to maintain cool operation
 - Modular system for redundancy in the event of a failure
- → Ultimately we aim to win the 2020 MATE ROV competition



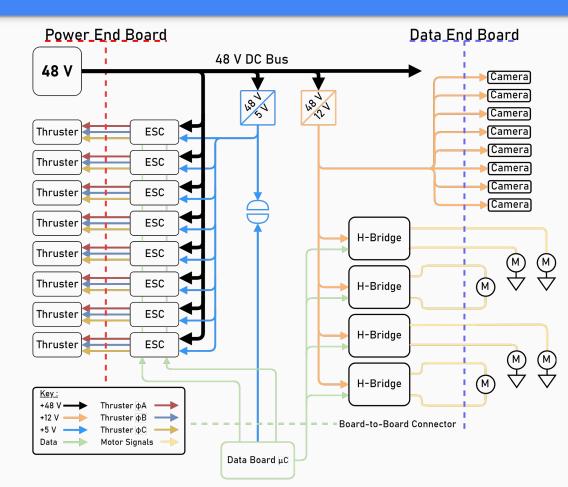

The On-Board Electronics Capsule - [George]

The Electronics System - Board breakdown - [Joe]

The Electronics System - Basic Diagram - [Ben]


Data Board - [Joe]

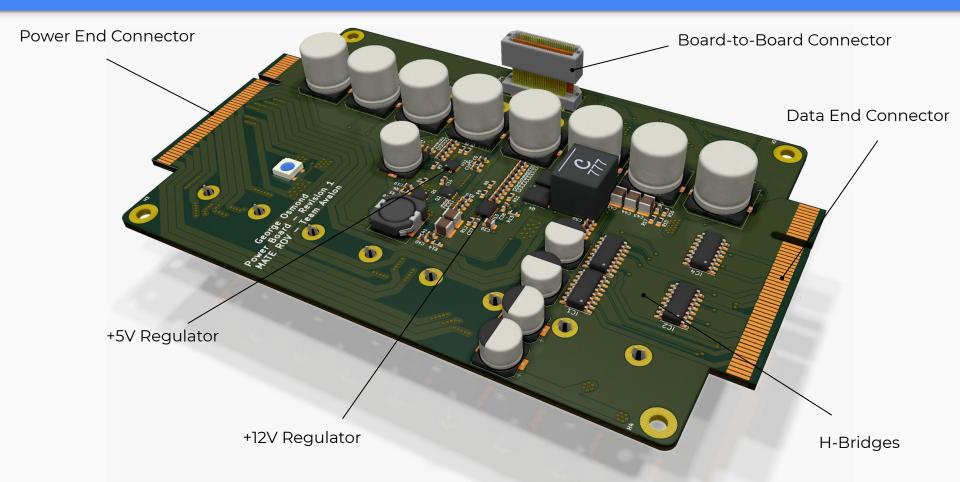
- → ATSAM3x8E central microcontroller
- → Raspberry Pi CM3+ as image processor
- → Spartan-6 FPGA for image processing assistance for Raspberry Pi
- → KSZ9477s 7 port ethernet switch with gigabit SFP fibre optic module
- → Differential communications
- → On board PSU with 5 voltage levels
- → Wireless programming with XBEE
- → USB hub and switching for configurable add ons
- → IPS display for debugging
- → RGB for feedback
- → Multiple environment and positional sensors



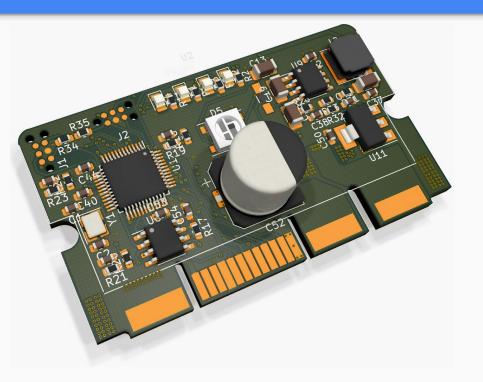
Data Board - [Joe]

- → ATSAM3x8E central microcontroller
- → Raspberry Pi CM3+ as image processor
- → Spartan-6 FPGA for image processing assistance for Raspberry Pi
- → KSZ9477s 7 port ethernet switch with gigabit SFP fibre optic module
- → Differential communications
- → On board PSU with 5 voltage levels
- → Wireless programming with XBEE
- → USB hub and switching for configurable add ons
- → IPS display for debugging
- → RGB for feedback
- → Multiple environment and positional sensors

Power Board - System Diagram - [George]

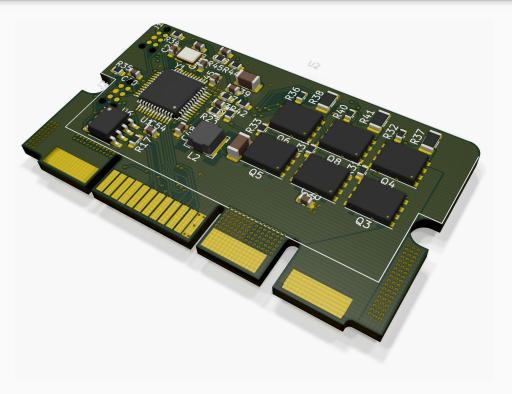


- → Designed to handle all of the ROV's power components and voltage regulators
- → +48 V to +5 V regulator
 - Used by ESC for 3V3 level shifter and slot allocation
- → +48 V to +12V Regulator
 - Supply for Cameras and H-Bridges
- → H-Bridge Configuration
 - 8x Solenoid Valve Controls

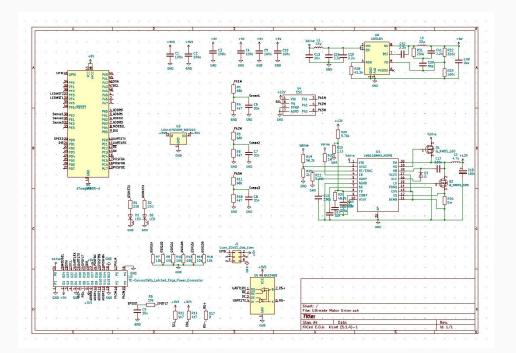

or <u>or</u>

♦ 4x Motor Controls

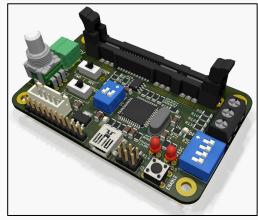
Power Board - Circuit Design - Revision 1 - [George]

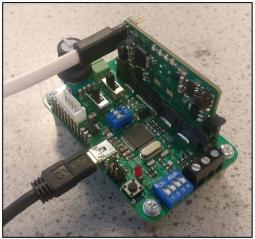


GaN ESC Module - [Henry]


- → 3-Phase PMSM / BLDC Motor Driver
- → 10 A @ 48 V
- → Switchable control schemes
- → Dual-Core microcontroller
- → GaN MOSFETs fast, efficient switching
- → Easily replaceable design
- → BLDC Simple, reliable
- → PMSM Efficient, Quiet operation
- → Many Comms protocols: RS-485 UART Speed/Dir Analogue I2C Servo PPM

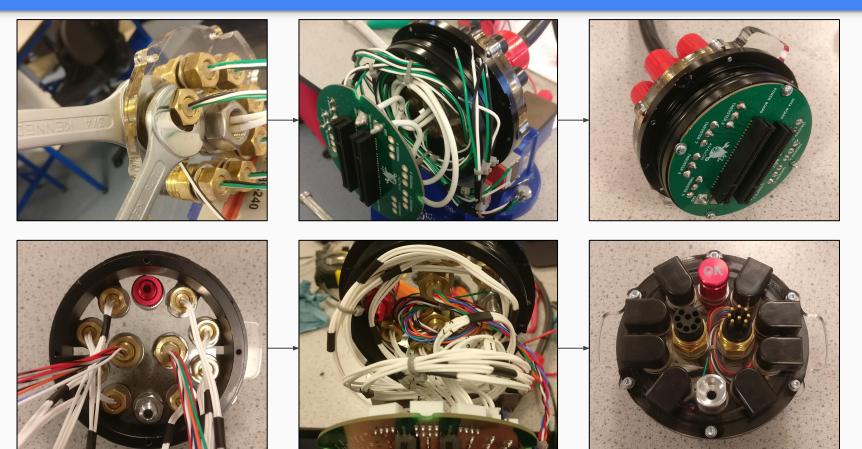
Si ESC Module - [Henry]


- → 3-Phase PMSM / BLDC Motor Driver
- → 16 A @ 48 V
- → Switchable control schemes
- → Dual-Core microcontroller
- → Si MOSFETs powerful, lower losses at slower switching frequency
- → Easily replaceable design
- → BLDC Simple, reliable
- → PMSM Efficient, Quiet operation
- → Many Comms protocols: RS-485 UART Speed/Dir Analogue I2C Servo PPM


Backup ESC Module - [Henry]

- → 3-Phase BLDC Motor Driver
- → 30 A @ 12 V apparently
- → DC/DC converter 48 V 12 V onboard
- → ATmega based
- → Off-the-shelf ESC attached
- → Easily replaceable design
- → Many Comms protocols: RS-485 UART Speed/Dir Analogue I2C
 - Servo PPM

ESC Breakout Board - [Ben]



- → Allows ESC modules to be programmed and tested quickly and easily.
- → Allows development of the ESC modules to be isolated from the rest of the electronics system.
- → Based on the ATmega 32u4.
- → Controlled over a USB serial interface.
- → Contains a range of switches, buttons, potentiometers and LEDs to enable full functionality testing.

Interface Boards - [Ben]

Data End

Software - [Ben]

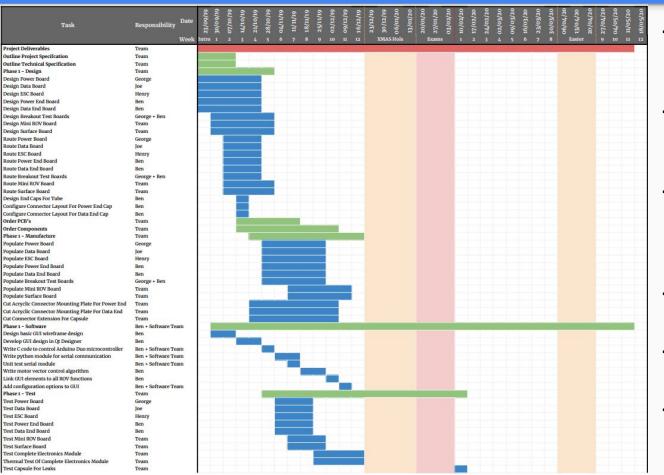
	GUI
	e python™
	Qt The Qt Company
→	Program runs on a computer at the

- → Program runs on a computer at the base station.
- → Used by the pilot to control the ROV and all its functions.
- → Uses XBOX controller for user inputs.
- → Developed in Python and PyQt5.
- → Highly configurable for future ROV designs / different pilots.

- → Runs on the Atmel microcontroller on the ROV.
- → Developed in C++ in the Arduino Environment.
- → Receives data from the control program over a serial interface.
- → Controls thrusters, actuators, sensors and cameras.

Software - GUI Control Panel - [Ben]

MainWindow				- 0
e Help				
ontrol Panel Configuration				
		Camera Feeds		Communication Setup
External Camera Feeds		•	•	ROV DISCONNECT
Feed 1	Feed 2			Controller CONNECT
Camera 1	▼ Camera 3 ▼			Actuators
Feed 3	Feed 4	NO SIGNAL	NO SIGNAL	Gripper OPEN
Camera 8	▼ Camera 6 ▼			Despenser OPEN
Camera o	Camera o			Sensors
				Temperature (°C) 0.1671353945148628
_		~		Depth (m) 0.42812163664773406
				Mini ROV
				Activate
				Tether Length
				24%
				Extend Retract
				Image Processing
				Transet Line Start
				Shape Detection Start
		IO SIGNAL		Control Orientation
			FORWARD A	
				Competition Time
				00:00:00:00
				Start Reset
				AVALON


Software - Control GUI - [Ben]

MainWindow

Control Panel Configuration Communication Configuration Thruster Configuration Actuator Configuration Sensor Configuration **Camera** Configuration 8 * Quantity ROV ٢ ROV Location A Quantity 3 Quantity 2 Default Feed 1 None * Controller Thruster 1 Reversed Actuator Name Gripper Measurement Rate * Default Feed 2 None * Test COM Port COM4 Actuator 1 Default State Open Type Temperature (°C) Sensor 1 . Default Feed 3 None -ROV Location C -Find COM Ports Actuated State Closed Sensor 2 Type Depth (m) . Default Feed 4 None Ŧ Thruster 2 Reversed Actuator Name Plastic Net Baud Rate -Test Actuator 2 Default State Off ROV Location B * Actuated State On 21:17:20 -> Welcome to the Avalon ROV control Reversed interface. Thruster 3 Actuator Name Dispener 21:17:20 -> Click 'Help' on the taskbar to access the user Test manual. Actuator 3 Default State Open 21:17:20 -> Connect to the ROV and CONTROLLER to get ROV Location E Actuated State Closed started. 21:17:20 -> Configuration file settings applied. Thruster 4 Reversed 21:18:22 -> Searching for available COM ports... Test 21:18:24 -> 1 available COM ports found. 21:18:24 -> Device Identity: AVALONROV ROV Location D * 21:18:24 -> Connection to ROV successful. Thruster 5 Reversed 21:19:01 -> Connected to controller. Test Key Bindings Controller Values **ROV Visualisation** Left X 0 * Switch Orientation Auto Binding Left Y 0 Triggers 0 Actuator 1 Auto Binding Right Y 0 Right X 0 * Actuator 2 0 Α Auto Binding 0 R 0.8 Actuator 3 0.6 х 0 Auto Binding 0.4 0 V 0.2 0 LB 1.0 RB Π 8.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.6 SELECT 0 0.4 0.2 START 0 0 LS RS 0

- 6 X

Project Progression and Future Work - [George]

- → Project currently on track with initial Gantt chart plan
- → Currently in testing and redesign phase of timeline
- → Next step is to modify circuits if required then start final and full system tests
- → Revision 2 of PCBs will improve circuit design
- → Improve performance and functionality
- → Increase reliability

Thank you for listening!