
Benjamin Griffiths (160159871)

1 | P a g e Electronic & Electrical Engineering

The University of Sheffield

EMBEDDED SYSTEMS REPORT

Lab Group: G4a

UCARD: 160159871

Word Count: 2336

Benjamin Griffiths (160159871)

2 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Introduction

This lab investigates the use of LabVIEW, a graphical programming language and development environment to

interface with external devices such as a servo control system. Simple programs will be created and debugged to

perform certain tasks, and there will be an introduction to performing data acquisition within a computer system.

Furthermore, this lab looks at working with embedded systems using the myRIO board by National Instruments (NI),

which will be programmed using LabView.

Background

The LabView graphical programming language is strictly typed, meaning there is no code to physically type, hence a

program is made by connecting a network of modules, in the form of icons. The benefit of creating a program this

way compared to physically programming it comes down to reliability, speed and compatibility. For instance, a typed

program could be made from many sections of code written by different entities, to different specifications. There

may be no guarantee that these sections of code will work together, which leads to time consuming debugging and

testing. In contrast, the modules within LabView are pre-written, pre-tested and are compatible with each other,

resulting in a program that is simpler to create and more robust. A different example of a graphical programming

application is Simulink, where a program is written by icons rather than lines of code.

An industry application of this could be air-bag systems for cars, where rather than each manufacturer creating their

own code, they import a pre-written, heavily tested program that will be compatible and is guaranteed to operate

reliably.

Data acquisition is the process of measuring physical quantities, such as temperature or a voltage, and converting

them into a form which can be understood by a computer program, such as an electronic signal, to be stored or

displayed. This process is used in virtually every area of science and engineering, from complex control systems to a

simple volt meter. [1]

In the context of this lab, the data acquisition process is used as part of the control system that controls the servo

motor. Electrical signals from its potentiometer and tachometer are converted into a suitable data type to determine

and display the servos angular position speed, which can then be used as feedback to accurately control the operation

of the servo.

An embedded system can be part of a larger electrical/mechanical system, and has a specific dedicated function that

it performs. They have many forms, from being small discreet microprocessor systems which perform a single task,

to complex systems that perform multiple tasks with user interfaces. An Arduino is a classic example if an embedded

system, where a microprocessor (ATMega328) can be used as an I/O device to control external motors, lights etc. [2]

For example, within a cars electronic controls system, and embedded system could be used to perform a single,

dedicated function, such as operating the seatbelt pre-tensioner in the event of a crash. This embedded system would

be programmed once, and would operate reliably because it has no other functions to control and will not be affected

by software updates in other systems. If another system was to fail, the embedded system would not be affected.

Benjamin Griffiths (160159871)

3 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Theory

Hardware Interfaces:

Embedded systems are able to control external mechanical and electrical devices because they have a range of

input/output (I/O) ports that can be used to receive and transmit both analogue and digital signals. An example of

the I/O interface from an Arduino can be seen below in figure 1.

However, the myRIO used in the experiment is slightly different to the Arduino as it has a Field Programmable Gate

Array (FPGA). The microprocessor in the Arduino is a fixed circuit with specific instructions that need to be used to

control it, whereas the FPGA in the myRIO can be configured entirely from scratch to be set up however the

programmer decides using low-level Hardware Description Language (HDL). [3]

These I/O pins can work with signals such as PWM, AC analogue signals and serial data, which makes them perfect for

many kinds of control systems where data from the device is it controlling can used as an input to the embedded

system, to be processed and make changes to the output.

In the context of the lab, the I/O pins from the myRIO are used to send data to the servo, and receive real-time data

from the servos potentiometer and tachometer to enable accurate control over its speed and position.

Data Acquisition:

The process of data acquisition (DAQ in LabView), involves taking a signal from a sensor, which could be in the form

of a voltage, current or resistance, and converting it into a suitable electronic signal that can be interpreted by a

computer, seen in figure 2.

The DAQ device is the middle man between the sensor and computer system. It acts to convert the raw sensor signal

into a safe and readable electronic signal through processes such as signal conditioning and analogue to digital

conversion (ADC). Signal conditioning involves manipulating a signal that’s too noisy or dangerous to directly

measure, through processes such as attenuation, amplification and filtering to create a signal suitable for the ADC.

The ADC convert this analogue signal into a digital form that can be transferred to the computer to be decoded and

analysed. [4]

Digital I/O Ports

Analogue Input Ports

Figure 1: Arduino I/O Ports.

Figure 2: DAQ Process.

Benjamin Griffiths (160159871)

4 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Method & Results

Servo Control:

The first experiment involved using LabView and the ELVIS board as an I/O interface and data acquisition device to

control a servo motor as seen in figure 3.

As part of the data acquisition process, the potentiometer and tachometer sensors will provide signals to indicate

the servos position and angular speed respectively.

To communicate with the ELVIS board, create a LabView block diagram such as the one in figure 4, that can take the

data from the sensors and display them accordingly, while manually controlling the motors speed.

Figure 4: Servo control block diagram.

Figure 3: Servo motor.

Potentiometer

Optical

Encoder

Motor and

tachometer

Benjamin Griffiths (160159871)

5 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Connect the servo motor to the motor driver unit, and connect the data cables from the servo to the ELVIS board so

that LabView can communicate with it.

Run the program, and using the front panel as shown in figure 5, the speed of the motor can be controlled using the

slider, with the sensor data being shown in real time on the three graphs.

The potentiometer/Encoder screen will display a saw-tooth waveform, with each period of the waveform

representing one revolution of the servo load. Furthermore, the tachometer will display a DC voltage proportional

to the motors speed.

The second experiment involved programming the myRIO board as an embedded system to control LED’s.

An example circuit is shown below in figure 6.

Figure 5: Servo control front panel.

Speed control slider ELVIS board

Potentiometer Sensor

Reading

Servo Potentiometer/Encoder

Sensor Reading – Angular Position

Servo Tachometer Sensor

Reading – Angular Speed

Figure 6: LED circuit.

Benjamin Griffiths (160159871)

6 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Using LabView, design a block diagram that uses the various I/O pins on the myRIO to input data from switches and

potentiometers etc.

An example circuit that causes a ‘chasing lights’ effect using a series of LED’s and buttons seen in figure 6 is shown

below in figure 7.

Construct the circuit using LED’s and switches, making sure to use the correct I/O pins on the myRIO.

Upload the code, and confirm that the circuit behaves as it was programmed.

As expected, once programmed, the myRIO effectively became its own computer, and no longer needed to

communicate with LabView for the interfacing to work. When the buttons were pressed, the LED patterns configured

worked as intended.

Figure 7: LED control block diagram.

Benjamin Griffiths (160159871)

7 | P a g e Electronic & Electrical Engineering

The University of Sheffield

Discussion

The first experiment operated as expected, with the software controls in LabView successfully controlling the motor,

and the data from the sensors being displayed on the front panel. The ELVIS board acted as the interface between

the computer running LabView and the motor driver. The data acquisition process from the block diagram in figure 4

to collect data from the sensors is shown below in figure 8.

Is it clear using the graphical programming language how the data is received, conditioned and converted, then

displayed.

The output section of the code is shown below in figure 8.

This section of the code takes the signal from the software slider, and outputs a signal to the ELVIS board to control

the motor.

The code that controls the LEDs was very similar as seen in figure 7, where the inputs from the hardware buttons are

received as digital signals, and are then processed to trigger a change in the output.

Figure 7: Servo control DAQ process.

Selects which ports

to read signals

from.

Sets sample rate of

the ADC, part of

signal conditioning.

Displays data for user

to interpret on graphs

Analogue to

Digital

conversion

Figure 8: Servo control output.

Benjamin Griffiths (160159871)

8 | P a g e Electronic & Electrical Engineering

The University of Sheffield

There are many comparisons to be made between the ELVIS board and the myRIO as an I/O control device, and each

have their own specific advantages and disadvantages within different contexts.

Firstly, the ELVIS board in this experiment is merely an interface, used as a data acquisition device to take data from

the motor and give it to the computer, relying on communication with LabView to operate. If the ELVIS was to be

disconnected from the LabView software, it would no longer function as programmed, and would be unable to

interpret data from the motors sensors to make adjustments. This is because the ELVIS does not have its own memory

or microprocessor – it relies on the computer running LabView to do the necessary processing.

In contrast, the myRIO is an embedded system, with its own processor, FPGA, memory and I/O ports. Once

programmed, its effectively becomes its own computer that can process input data and control its outputs. This

enables the myRIO to continue working as it was programmed to do while being disconnected from LabView.

This is a significant difference between the two systems because it makes the myRIO systems and embedded systems

as a whole more versatile. For example, the board used on the ELVIS system was custom made to perform a specific

task, which is only compatible with the servo motor and cannot be easily modified to be compatible with other

devices. However, an embedded system like the myRIO doesn’t have a fixed way of operating, and can be

programmed in virtually any way to utilise it’s available I/O ports. This makes it particularly useful in the real world

for prototyping control systems, where it would be unnecessarily expensive to produce a new module for the ELVIS

for each iteration of the system design, whereas the myRIO can simply be reprogrammed, and used for many

different applications.

Furthermore, in certain aspects, the myRIO has an advantage over the ELVIS system because of its portability. An

example of where this is relevant is robotics, where the compactness and independence of the myRIO allows it to be

easily connected to a robot, whereas the ELVIS is designed for work bench use and wouldn’t operate without being

connected to LabView.

However, the rich functionality of the ELVIS system makes it more suitable for use in education and accurate

measurements, since it has the capabilities of an oscilloscope, function generator, power supply and millimetre built

into one package that is software controlled. This makes it more cost effective compared to buying all the above

systems separately, and it has a more versatile way of displaying data accurately within software. The modular design

of the ELVIS system with interchangeable PCB modules also makes it perfect for education since there can be

dedicated circuits for different experiments.

Another disadvantage of the myRIO is its high price, which limits it availability to many people, whereas a cheap

Arduino is both easier to use, can be programmed many different ways and can match almost all the functionality of

the myRIO with the right hardware. However, the Arduino is an embedded system designed for hobbyists, whereas

the myRIO is based upon the cRIO, which is an industry standard, and hence will be more likely to be used in the real

world.

Conclusion

Overall, the lab successfully met the initial aims by investigating the use of graphical programming to reliably operate

control systems, while exploring the use of embedded systems. For example, through using LabView, it was clear

how the data acquisition process was used to collect signals from the servo or switches, to the be processed and

influence the output. Furthermore, an understanding of the fundamental differences between the ELVIS system and

the myRIO was established, and the strengths that each system has over each other in certain contexts. For example,

due to the myRIO’s portability and versatility, it is most suitable for control systems, where its range of sensors, I/O

and processing power make it perfect for robotics or data collection in the field. In contrast, it makes perfect sense

to use the ELVIS in education as a powerful measurement tool, because it has the functionality of many discrete

systems built into one package that can be viewed within LabView.

To enhance the understanding of the topics investigated in the lab, it would have been useful to control the servo

motor using the myRIO as a discrete embedded system, with no communication from LabView once programmed.

This is how an embedded would operate in some real-world scenarios after all, such as safety critical systems, where

that embedded system is relied upon to operate a single task.

Benjamin Griffiths (160159871)

9 | P a g e Electronic & Electrical Engineering

The University of Sheffield

References

[1] M. Rouse, “Embedded System” in Internet of Things Agenda, December 2016. [Online]. Available:

http://internetofthingsagenda.techtarget.com/definition/embedded-system. Accessed on: Nov. 7th, 2017.

[2] Unknown Author, “Embedded Systems – Overview” in Tutorials Point, Unknown Date. [Online]. Available:

https://wnw.tutorialspoint.com/embedded_systems/es_overview.html. Accessed on: Nov. 7th, 2017.

[3] Unknown Author, “What is an FPGA?”, in Embedded Micro, Unknown date. [Online]. Available:

https://embeddedmicro.com/tutorials/mojo-fpga-beginners-guide/what-is-an-fpga. Accessed on: Nov. 7th, 2017.

[4] Unknown Author, “What is Data Acquisition?” in National Instruments, Unknown Date. [Online]. Available:

http://www.ni.com/data-acquisition/what-is/. Accessed on: Nov. 9th, 2017.

http://internetofthingsagenda.techtarget.com/definition/embedded-system
https://wnw.tutorialspoint.com/embedded_systems/es_overview.html
https://embeddedmicro.com/tutorials/mojo-fpga-beginners-guide/what-is-an-fpga
http://www.ni.com/data-acquisition/what-is/

